ToC of Heterotelechelic Silicones: Facile Synthesis and Functionalization Using Silane-Based Initiators

Heterotelechelic Silicones: Facile Synthesis and Functionalization Using Silane-Based Initiators

Yoichi Okayama, Taejun Eom, Michael Czuczola, Allison Abdilla, Jacob R. Blankenship, Kaitlin R. Albanese, Javier Read de Alaniz, Christopher M. Bates, and Craig J. Hawker

Macromolecules 2023

Full Article

 

Abstract: The synthetic utility of heterotelechelic polydimethylsiloxane (PDMS) derivatives is limited due to challenges in preparing materials with high chain-end fidelity. In this study, anionic ring-opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) monomers using a specifically designed silyl hydride (Si–H)-based initiator provides a versatile approach toward a library of heterotelechelic PDMS polymers. A novel initiator, where the Si–H terminal group is connected to a C atom (H–Si–C) and not an O atom (H–Si–O) as in traditional systems, suppresses intermolecular transfer of the Si–H group, leading to heterotelechelic PDMS derivatives with a high degree of control over chain ends. In situ termination of the D3 propagating chain end with commercially available chlorosilanes (alkyl chlorides, methacrylates, and norbornenes) yields an array of chain-end-functionalized PDMS derivatives. This diversity can be further increased by hydrosilylation with functionalized alkenes (alcohols, esters, and epoxides) to generate a library of heterotelechelic PDMS polymers. Due to the living nature of ring-opening polymerization and efficient initiation, narrow-dispersity (Đ < 1.2) polymers spanning a wide range of molar masses (2–11 kg mol–1) were synthesized. With facile access to α-Si–H and ω-norbornene functionalized PDMS macromonomers (H–PDMS–Nb), the synthesis of well-defined supersoft (G′ = 30 kPa) PDMS bottlebrush networks, which are difficult to prepare using established strategies, was demonstrated.