PET/CT Imaging of Chemokine Receptor CCR5 in Vascular Injury Model Using Targeted Nanoparticle

Luehmann, H.P.; Pressly, E.D.; Detering, L.; Wang, C.; Pierce, R.; Woodard, P.K.; Gropler, R.J.; Hawker, C.J.; Liu, Y.J.
J. Nucl. Med.,
2014
55, 629-634.

Inflammation plays important roles at all stages of atherosclerosis. Chemokine systems have major effects on the initiation and progression of atherosclerosis by controlling the trafficking of inflammatory cells in vivo through interaction with their receptors. Chemokine receptor 5 (CCR5) has been reported to be an active participant in the late stage of atherosclerosis and has the potential as a prognostic biomarker for plaque stability. However, its diagnostic potential has not yet been explored. The purpose of this study was to develop a targeted nanoparticle for sensitive and specific PET/CT imaging of the CCR5 receptor in an apolipoprotein E knock-out (ApoE(-/-)) mouse vascular injury model.